E-311

(C

/ v R
e "
HEAT TRANSFER FOR;TAMINAR FLOW IN DUCTS WITH
ARBITRARY TIME VARIATIONS IN WALL TEMPFRATURE
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ABSTRACT

An analysis is made for laminar forced convection heat transfer in a clrcular
tube or a parallel plate channel whose walls may undergo arbitrary time variations
in temperature. The time varying process can begin from an already established
steady state situation with heat transfer taking place, or the fluid and wells can
be initially at the ssme uniform temperature. The fluid velocity distribution is
fully developed and unchanging with time. At any instant during the éransient the
wall temperature is spatially uniform, that is all portions of the wall simultaneously
undergo the same temperature-time variation. The greater part of the analysis 1s con-
cerned with the response to a. step change in wall temperature, and the time required
to reach steady state is given for thi§ type of transient. Then the results are gen-

eralized to apply for arbitrary variations with time.
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local heat addition per unit area at channel wall
dimensionless radlal coordinate, r/ro
radial coordinate measured from circular tube centerline; r

%? for a circular tube, E%E for a parallel plate channel

o» tube radius !

Reynolds number;

dimensionless temperature, (t - t.)/(t, - tg)

temperature; to’ temperature of fluid entering channel (a constant); tw,
wall temperature

temperature difference, t, - t,

fluid velocity in the x-direction;'ﬁ, mean fluid velocity; Woox? maximum
fluid velocity in the channel cross section

x/r

dimensionless axisl coordinate; §€§% for a circular tube,-%-dég—

;ePr for a
parallel plate channel

axial distance from entrance of channel

dimensionless coordinate, y/a

normal coordinate measured from centerline of parallel plate channel

thermel diffusivity, k/pcp

steady-state eigenvalues for circular tube

exponential constants in transient solution for circular tube, Eq. (17)

ov

dimensionless time; gv for circular tube,

2
rOPr a“Pr

for parallel plate channel

time

dummy integration varigble

steady-state eigenvalues for parallel plate channel

absolute viscosity

kinematic viscosity

fluid density

exponential constants in solution for parallel plate channel, Egq. (36a)

exponential constants in solution for parallel plate channel, Eq. (36b)
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¢y eigenfunctions for solution in circular tube
3 X function of X in steady-state solution for circular tube, Eq. (5)
| Subscripts:
s refers to steady-staté condition
N INTRODUCTION

The behavior of heat transfer equipment during transient temperature changes has,

in recent years, received greater attention especially in connection with the use of
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nuclear reactors as power sources. Since nuclear properties are often temperature
dependent,it is sometimes necessary to consider in detail +the thermal transients
within the system, to be assured that proper control will be maintained during power
changes. The present paper is concerned with studying the heat transfer behavior
assoclated with a thermal transient in a forced convection channel flow.

Two geometries which are commonly encountered in practice are selected for anal-
ysls, the circular tube, and the parallel plate chamnel. The flow in the tube or be-
tween the parallel plates is assumed to be laminar, incompressible, and fully deve-
loped. The last assumption implies that a hydrodynamic entrance length 1s present
which allows the flow to establish a fully developed velocity distribution before
reaching the heated section of the channel. The transient heating process is such
that the wall temperature can be specified to have an arbitrary time variation.
Initially the system can be either at steady state with heat transfer taking place,
or the whole system can be initially isothermal with the fluid and bounding walls all
at the same temperature. At any instant of time the wall temperature is uniform, that
is, all positions along the wall simultaneously undergo the same temperature-time
variation.*

Most previous analyses of transient forced convection‘heat transfep in §g$sages

have been treated by one-dimensional approximations, that is,vvelocity'and temperature

®*For the parsllel plate channel both walls are at the same temperature.

e -
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variations over the channel cross section have been neglected. A good review of work
using this approach can be found for example, in references (1) and (2). The present
work employs a two-dimensional analysis and thus includes the variations in velocity
and temperature over the cross sections of the flow channels.

The transient heat transfer situation considered here has been treated by another
method in references (3) and (4). However, in these references only the thermal en-
trance region is examined and the results do not extend far down the passage. The
present method yields results for the entire length of the channel, but in the series
expansion method which is employed, many terms are required to calculate results for
the region very close to the tube entry. Thus, by joining the present results to those
of references (3) and (4), information is obtained for all positions in the flow
peassage.

Two methods for performing the analysis are given here; one method is used in the
calculations for the circular tube while the other is used for the parallel plate con-
figuration. As will be shown in the analysis these two methods differ in the way
certain required functions are computed. For the circular tube the computation in-
volves the numerical integration of an ordinary differential equation, while for the
parallel plate channel the functions are obtained by a series expansion in terms of
more simple functions. A method somewhat similar to the second approach has been briefly
outlined in reference (5). The method given here is not an exact solution of the
governing partial differential equation, but involves an approximation at one step
in the analysis. The validity of this approximation is tested by comparison with ex-
act results available for part of the solution and good agreement is obtained. For
arbitrary time varietions in wall temperature, results are obtained by general-
izing the transient corresponding to a unit step change in wall temperature.

The analysis thus proceeds in the following order. The circular tube is anal-

yzed for a step in wall temperature, and the results are then generalized for arbitrary
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time variations. Then the parallel plate configuration is treated by a slightly 4if-
ferent method. Results of transient heat flux variations and times required to reach
steady state are given graphically and compared with previous work.
STEP-CHANGE IN WALL TEMPERATURE FOR FLOW IN A CIRCULAR TUBE
This portion of the analysis is concerned with fully developed laminar flow
through a circular tube as shown in Fig. 1. The tube and fluid are assumed to be in-
itiaelly isothermal at temperature t,. Then the wall 1s given an instantaneous step

in temperature to a new value t,; and maintained at ty; for all time thereafter.

The energy equation for incompressible flow in a tube can be written as

ot ot 10 ot
3@+u3}—{=a; r(l‘g;) (l)

To obtain the equation in this form viscous dissipation and axial heat conduction are
neglected compared with heat conduction in the radial direction. It is convenient to

rewrite this equation in terms of dimensionless variables defined as,

_ OV« X/ro_ ReX.m_ t- %
- rgPr’ RePr’ Tl T by =ty

®, X, and R are respectively the dimensionless time, distance along the tube, and
radial distance, and are the three independent variables of the problem. The dimen-
sionless temperature T 1is defined so that at the entrance to the heated section the
value of T is zero while at the tube wall T becomes unity. Since the flow is

fully developed the velocity distribution has the parabolic form,

- 2
u
== )
Substituting these quantities into Eq. (1) results in the following dimensionless
equation,
oT 2y O 10 oT
-F@-‘-(l-R)gi—ﬁ& RFR (3)

This must be solved subject to the following boundary conditlons:
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T=0 at X=0 forall R and @, entrance conditlon W
=0 at ® =0, for all R and X, initial condition
ST & (3a)
X = 0 at R =0, symmetry
T=1 at R=1 for all X and for @ >0, specified wall
temperature

To obtain a solution we first consider the results for the steady-state heat transfer
condition.

Steady-state solution. - At steady state there are of course no variations with

time and hence Eq. (3) reduces to

oT oT
(1'32)&E=%%(R'a§§> (4)

The steady state solution corresponding to the boundary conditions (3a) is for the

situation of fluid at uniform temperature entering a pipe maintained at a different

constant wall temperature. This problem was treated by Graetz in 1885 (see ref. (6),

p. 451), and for convenience will be briefly reviewed here as the results will be needed

later in the analysis.
A product solution is employed of the form
T, = 1 - x(X)o(R) (5)
When this is inserted into Eq. (4) it is found that
x = e=BX (6)
where -Bz is the separation constant arising in the product solution. The equation

for the function ¢ is

2

a“e . 1 d¢ 2 2y _
__dRz+§——dR+(pB (L-R%) =0 (7)
with the boundary condltions
de
ﬁ—o at R=0

(7a)

=0 at R=1
Equetions (7) and (7a) form an eigenvalue problem of the Sturm-Liouville type. Solu-

tions are possible only for a discrete, though infinite, set of § values. Hence,



b

E-311

©

-7 -
the solution for TS can be written as

2%

- -]
'Bn
Ty =1 - Z :Cncpn(R)e (8)
n=0
2
where Bn and ¢, are the eigenvalues and corresponding eigenfunctions of Egs. (7)
and (7a).
The coefficients Cp are evaluated from the boundary condition that Tg = O
at the tube entrance (X = O). Applying this condition to Eq. (8), we find that the

C, must satisfy,

0=1- Z Cp®p (8a)

n=0

From the properties of the Sturm-Liouville system it follows lmmediately that

1
.{ ® - R%)e, @R

Cp = —7 -
f (R - R°)o. aR
0

The first five eigenvalues of Eq. (7) and values of C, are available to very good

(8v)

accuracy in reference (7) and asymptotic results for higher values of Bﬁ and C,
are given in reference (8).

This completes the steady-state solution and we now turn to the transient
problem.

Transient solution. - To form a transient solution, we try a series expansion

about the steady state condition. With this type of formulation the transient solu-
tion will automatically converge, at large times, to exactly the steady-state result.
Thus we try a transient solution of the same general form as the steady state equa-
tion (8),

T=1 - Z CpFa(X,0)e (R) (9)

n=0
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For large times the function F, should, by comparison with Eq. (8), converge to

Fn.= e (10)

The spproximation which 1s now made is that the transient solution is only re-
quired to satisfy an integrated form of the energy equation, and will only exactly

satisfy the equation in differential form for the limit of very large time. Multi-

plying Eq. (3) by R and integrating from O to 1 gives the integrated form,

1 1
/ R%%GR+/ R(l-Rz)%TidR=(g—§-)_l (11)
0 0 =

The trial solution, Eq. (9), is then substituted into Eq. (11) with the result that

each F, must satisfy the relation

1 1
OF oF
3 o
Wn / Ro, dR + EXB (R - R%)e, @R - Fn(3§>3=l =0 (12)
0 0

This type of partial differential equation can be treated by using the method of char-
acteristics. In this method the solution is obtained by considering the following

auxiliary ordinary differentlal equations (see ref. (9), p. 368),

e _ ax ___ %y (1)
1 1 3 8@
f Ro, dR f R -R7)o, &R -F =
0 0 R=1
Equating the second and third terms ylelds a solution for F, as,
) -30/® |, _, .
[
3
J (R-R°)e dR
F_=c¢e (14a)

n

To simplify this the steady state Eq. (7) is multiplied by R and integrated from

R=0 to R =1, with the result

2 -3¢/ |, _,

n I
f (R - R%)o, dR
0
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Comparing this with the exponent in Eg. (14a) we find that

Fpo=e (14b)
which is the desired form for steady-state as given by Eq. (10). In a similar

fashion the first and third terms of Eq. (13) are equated which gives the solution
-3¢/3| 5y

_:;ij_____.
A R¢n dR
F =¢e

n

®

(15) |
Thus we have obtained two results, one being the steady-state solution, Eq. (14v),
and the other, Eq. (15), a solution which is dependent on time only. The latter will

be called the initial transient solution. The method of characteristics indicates

that these two results can be joined along a characteristic line which passes through
the origin of the X-® plane. This line is obtained by integrating the equation formed
by the first and second terms of Eq. (13) subject to the condition that X = O when

®= 0. This yilelds

pu

1
.)(. Re,, dR

0

0 = T X= aX (186)
/ (R - R)o, &R
0
where the ratio of the two integrals hag been denoted by a_. Using an abbreviated

n

notation for the constants involved in the exponentials we have for F,

Fp=e ’ BRI 4

% (17)
F =-¢e¢ s ® zalX

2
where an = Bn/rn. To obtaln the finsl form of the solution, F 1s substituted

n

into Eq. (9) to give

-] -Yn®
e @< aX
T=1- E co,(R) Zx’ (18)
n=0 -Bn
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Now it is necessary to consider the boundary conditions as given by Eq. (3a).
At X =0, for any finite @, the condition ©® > a X in Eq. (18) 1is fulfilled, and

we have (since T =0 at X = 0)

0=1- E ann

n=0
This condition has already been satisfied according to Eq. (8a). For ©® = O, we have

for any finite X the condition ® < ayX and Eq. (18) gives (since T =0 at

O0=1- E ann
n=0

which is agaln the same condition that has already been satisfied by proper evaluation

@ = 0)

of the C,. The first two boundary conditlons of Egs. (3a) are thus satisfied by
using the same Cn obtained in the steady-state solution. The last two boundary
conditions are identically satisfied as they were used in determining the ¢,.

Hence the solution satisfies all of the required boundary conditlons, converges ex-
actly to the steady-~state conditlon for large times, and 1is approximate to the extent
that it satisfies an integrated form of the energy equation. The accuracy of this
approximation will be discussed a little later.

Numerical solution. - In order to compute heat-transfer quantities from the tem-

perature distribution of Eq. (18) it is necessary to know values of Cp, @,, Tp, Bg,
and a,. As mentioned before, some of these quantities are already available in the
literature, but the values of ¢, were generally not tabulated in sufficient detail

so that the integrations necessary to determine v, could be performed. To obtain
the desired numerical information, Eq. (7) and the required integrals were programmed
for numerical computation on an IBM 653 electronic digital computer. A forward inte-
gration scheme (Runge-Kutta) was employed, and quantities were evaluated for the first
seven eigenvalues. These are listed in Table I along wilth the derivative of the elgen-

function at the wall which will be needed for the calculations in the next section.
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Space limitations preclude & presentatlon of the ¢, values but they are availlable
as IBM listings.

Wall heat flux. - It is recalled that the transient heating process which yields

the temperature distribution of Eq. (18) is one in which the wall is given a step
function change in temperature from an initially isothermal condition with both the
wall and fluild at the same temperature. It is of interest to look at the wall heat
flux varistion which is required during the transient to maintain the wall tempersature

constant. This heat flux can be evaluated from Fourier's law

ot
q=ks5= rer (19)

where q 1s defined as the heat added at the wall. Applying this to Eqg. (18) gives
the result for the wall heat flux as a function of position along the tube and time
T,® © <aX

€ )

(20)

4o =_E c .‘EE
kzt - tos n - grR
w n=0

v

ReL| -BnX @ 2 X
€ ’

Before examining this expression in detail, the portion of it which forms the initial
transient solution will be considered as it will indicate, to some extent, the accuracy
of the integral approximation used in the analysis.

To better understand the initial transient process, consider the fluid which is
at the entrance of the heated section at the time that the step in wall temperature
occurs. After a period of time has elapsed, this fluid will have traveled a certain
distance down the tube. Beyond this dlstance there has not been any penetration during
the heating process of fluid which was originally outside the tube, and hence the heat
flow process in this region has not been affected by the fact that the tube has an
entrance. The behavior in this region is then that of a tube of infinite length in
both directions, and for the case of uniform wall temperature there are no variations
of heat transfer quentities with distance X. With no X variation the convective

term in the energy equation (1) is identically zero and a pure transient heat
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conduction process takes place. The heat flux variation during this initial transient
is obtained from Eq. (20) by considering the terms which vary with time only, that is,
we observe the heat transfer process at sufficiently large X so that ©® will al-

ways be less than a, X. The initial translent solution is then

@

-r. ©
%% = - E C il.(p_n e "o (21)
k(% - tg) n TR

n=0 R=1
This expression provides the opportunity for evaluating, to some extent, the accuracy
of the present method, since a direct comparison can be made with a known heat con-
duction transient. The exact solution for the initial transient is that resulting
from suddenly changing the surface temperature of an infinitely long solid cylinder.
The surface heat flux variation for this case is (ref. (6), p. 262)

® 2®

-€
ﬂ?:_r?—tof=zze " (22)
n=0

where €, are the zeros of the Bessel function JO. Eq. (21) has been evaluated for
a seven term approximation, and is compared with Eq. (22) on Fig. 2. The agreement
is generally quite good, so the present solution not only gives good results near
steady state as it is constrained to do, but is also well behaved in the initial
transient region.

Returning now to Eq. (20), it is noted that the n'th term is a negative expo-
nential in time until ® TDecomes equal to ayX. For larger © values the term is
a constant which depends only on the value of X being considered. Thus, for the
seven term approximation which has been carried out here, a graphical plot of the wall
heat flux is found as the sum of seven different curves each of which is a negative
exponential up to a certain bresk point and then becomes a constant. This is shown
schematically on Fig. 3 which 1llustrates, in graphical form, the way in which the

transient heat flux is determined at a glven location along the tube. Eq. (20) hes

been evaluated for several different values of X and results are shown on Fig. 4.
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The figure illustrates the transient process for several axial locations in the
heated section.

Steady state times. - A quantity of practical importance is the time required

for the wall heat transfer to reach the steady state value after a step in wall tem-
perature is made. Since steady state 1s approached gradually, the steady state
time, Oy, must be chosen somewhat arbitrarily. It 1s defined here as the time re-
quired for the heat flux to approach within five percent of the value reached for
infinite time. PFigure 5 presents @S as a function of X. Also shown are the steady
state times of Ref. (3) which were obtained by an approximate method applicable in
the region of small X, and which join the present curve fairly well.

Two limiting lines are drawn on Fig. 5. The line falling below the present re-
sults is a lower bound on the steady state time which is found by saying that the
heat transfer process cannot be stabllized at a certain location until a time of at
least x/umax has elapsed. The relation 6y = x/umax is equivalent, 1n the dimen-
sionless system of variables, to @S = X. The upper line 1s obtained from the slug
flow solution (Ref. (10)) which gives a steady state time of 64 = x/4, or @4 = 2X.
This line shows that the slug flow solution yields steady state times which are too
low for small values of X and too high for large X. Physically this is due to the
fact that for small X the thermal boundary layers are thin, and the establishment
of steady state in this region depends on the convection process near the wall. Since
the velocities near the wall are small, it takes longer for the fluid to move from the
tube entry to a glven location than 1s indicated by the slug flow approximation. Hence
in this reglon the slug flow solution underestimates the steady-state time. For large
X the establishment of steady state is evlidently more dependent on the velocities
further away from the wall. This 1s because during the initial transient period, heat
has been able to penetrate all the way across the tube and the fluid tempersture near
the wall has already been brought close to the wall temperature. Since the velocities
in the central portion of the tube cross section are higher than the slug flow velocity,

the steady state times are lower than slug flow predicts.
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ARBITRARY TIME DEPENDENT WALL TEMPERATURE FOR FLOW IN A CIRCULAR TUBE

Fluid and wall both initially at temperature t,. - In the previous section re-

sults were obtained which described the transient behavior following & step change
in wall temperature. As shown in Fig. 6 an arbitrary wall temperature variation can
be visualized as a series of differential steps, and due to the linearity of the
energy equation the effects of these steps can be added to determine the response for
an arbitrary variation. Since the wall temperature variation is specified, it is the
wall heat flux response which must be determined.

First consider a process in which the system 1s initially isothermal, and the

wall 1s then given a step in temperature dt, at time ®*. From Eq. (20) the response

to this differential step is

- ~¥,(0-8%) .
. S e , 0<(e-0")<aXx (23)
dq = = — E ;Cn —_— at!’ 23
r dR
° =3 R=1| -p3x (0 - ) > ax
e )
where t' = t; - t,. This response is then integrated over the arbitrary well tem-

perature variation to obtain the variation in gq. For a general discussion of this

type of superposition procedure, the reader is referred to Ref. (1l), page 403. The
integration of Eq. (23) can be put in the form,

=N-1 2
ar, E o, -BpX © -1, ©®-8%) "
=+ (8,X) = E -Cn —§ e (t')@_ x* / =Y e t!(e%)de
=0 Rt 0 Jeax
® 3¢
> do -1, (0-07)
* E Yoln / e " ©' (g%)ae™ (24)
R=1
n=N ¢}

where for a given @, the value of N 1is found from the relation

X<®<g (24a)
aN'l aNX -1
and for N = O we define the first summation as 2: = 0, and also let a_q = 0.
n=0

To use this relation we can think in terms of evaluating the heat flux as a function
of time at a particular X, say X = X; -
of the a.nXi and we use only the second summation from n =0 to n = «. As we go

For early times, ® will be less than all

to later times more and more terms are evaluated from the first summation. Since the
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problem, as given here, has only been evaluated for seven terms, when the time is
sufficiently large so that © > asxi only the first summation is used.

Initial steady state heat transfer with t # t,- - Here we are concerned with

computing the heat transfer behavior when the transient begins from an initisl steady-
state heat~transfer situation. This can be done by utilizing the results of the pre-
vious section in the proper way. In the previous section the transient began with
ty = b and we now begin again with this condition. Then we allow the wall temper-
ature to go through any convenient transient (e.g., a step function) which will bring
it to t,, and it is kept at 1%, until steady steady-state 1s reached. Then the spe-
cified transient 1s initiasted and the results for this part of the computation yilelds
the desired response from an initisl steady-state heat transfer condition.
STEP CHANGE IN WALL TEMPERATURE FOR FLOW IN A PARALLEL PLATE CHANNEL

The transient problem will now be discussed for fully-developed laminar flow be-
tween parallel flat plates as illustrated in Fig. 7. We consider the same step func-
tion transient which was discussed for the circular tube, that is, the system is in-
itially isothermal at temperature t, and the wall temperature is then suddenly
changed to tw. The final results are in the same form as those for the circular
tube case. Hence they can be generalized to include arbitrary time variations in
wall temperature which yields an expression of the same form as Eg. (24). Due to this

similarity only the results for a step change will be given here.

The energy equation analogous to Eq. (1) is

ot dt 324,
5_é+u&_a§y—§ (25)
This is rewritten in dimensionless form by defining the following variables,
t -t
v
- x-3EE veL meg—g
a“Pr € W o

where Re = E4a/v. Inserting the fully developed velocity distribution,

23k - @] 2
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into Eq. (25) yields the differential equation

3 2
3%+(1-Y2)%T}—(=§;§ (27)

which must be solved subject to the same boundary conditions as given by Egs. (3a)
with the coordinate Y replacing R.

Steady-state solution. -~ To obtaln the transient solution we first consider the

steady-state equation,
ST,  dT
2 S S
(1-Y%) 5= (28)

For the circular tube the eigenfunctions, ¢(R), of Eq. (7) were determined by numer-
ical integration of the governing differential equation. For the parallel plate
channel another approach will be 1llustrated which provides an alternate method of
attack. To begin this method we look at the slug flow problem corresponding to the
situation described by Eq. (28). For slug flow the velocity distribution, 1 - Y2,

is replaced by a constant value. Reference (10) shows that the eigenfunctions for
this case are in the form of cosines, cos ﬁEE;iEEQEX, where the m are integers from
zero to infinity. It is then proposed to bring in the Y dependence of the velocity
distribution by expanding the eigenfunctions in the solution of Eq. (28) in terms of

the eigenfunctions of the slug flow problem. Thus, a solution to Eq. (28) is tried

in the form
® 2
“AX
z : n Y 3nY 5nY
Ts =1 - e Eﬁo cos - + bnl cos 5" + bn2 cos 5 + . . ]
n=0
or
= _xﬁx = (2m + 1)nY
+ 1t
Ts=l-§ e E b . €08 (29)
n=0 m=0

For purposes of illustration, the procedure will be discussed here for a five term

approximation, that is the m and n indices will vary from O to 4.




E-311

- 17 -

If BEq. (29) 1s substituted into Eq. (28) there is obtained after rearrangement

(1 - Yz)[bno cos —’gﬁ+ by cos §-§—Y+ .+« + b, cos 91;1]
(Y o eos s (BF b age BT o\ 3@]
[(éf;) no COS % + (an) pl CO8 5+ . . .+ (zxn) b4 €05 —5=| =0 (30)
Equation (30) is then multiplied by cos %} and integrated over Y from zero to
one. This results in the first of the five simultaneous equations shown below. Then
Eq. (30) is multiplied by cos é%z and integrated to yield the second equation, and

this process is repeated for each of the cosine harmonics. This yields the following

set of five simultaneous equations for the five term approximation being considered

2 4 h
_x . n .3 2 1 9
( 3 1+ 8X§> bno 7 bnl + 33 bn2 - 71 bnS + 700 bn4 =0
2 4
3 " 1 9x 15 21 1
'an0+<__3——§+—~8)§)bnl-ﬁbn2+loobn3 12bn4 0
Sy LS, o fxflr ety s a5, - (31)
36 n0 - 16 nl 3 5 g2 ) n2 36 n3 " 196 n4 "
n
A R - S (. O L%, o) 6. _,
144 10 7 7100 nl T 36 “n2 37497 g2 n3 T 64 n4
n
2 4
9 1 45 63 b1d 1 81lx
400bn0-ﬁbnl+196bn2'Ezbn3+<-_3--_l+8xr21)bn4—o

o

Since these equations are homogeneous, the b can only be nontrivial if the matrix
of their coefficients is zero, and hence the Xi are the roots of the coefficient
matrix. The Xg were found by solving the matrix on an IBM 653 electronic digital
computer using a double precilsion routine which carried 16 significant figures.

An accuracy of sbout 12 figures in the Xﬁ values was found necessary to obtain
good values of the bnm' The Xi are listed in Table II and the first four show
good agreement with those evaluated by other methods in Refs. (8) and (12). The
poor agreement of Xi ls due to the fact that only a five term approximation 1s

being used here.
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With the Xﬁ known, the set of homogeneous Egs. (31) cannot be solved to yield
all the b, but will only yleld four coefficients in each equation in terms of the
fifth coefficient which remains yet undetermined. Thus, if each equation in the set
is divided by its by, the ratios bnl/bnO’ an/bnO’ etc., can be determined by
solving any four of the resulting five simultaneous eguations. The solution as

given by Eq. (29) is now in the form
4

4
-N2X b
3 z ; n Y E : nm (2m + 1)nY
Ty =1 - b € cos == + " cos = (29s)
m=1

n=0
where the bnm/bno are known.

To determine the b Wwe apply the boundary condition that Tg =0 at X = O.

This ylelds
4 4 b ( )
2 : nY nm 2m + 1
1= bnO cos = + 5;6 cos *——E———— nY (32)
n=0 m=1

Equation (32) is now multiplied separately by each of the cos @ ; 1)xY and in-

tegrated over Y from zero to one. This ylelds, for the five term approximation,

five simultaneous equations for the unknown by,g,

4
4

me:E
n=0

4

E =\ IR (33)

b0 no ~ (°m + L)x
n=0 m=1,2,3,4

When the bno have been determined from this set, BEq. (29a) provides the complete
solution to the steady-state problem. The numerical values of the constants are
given in Table II.

Transient solution. - The steady-state solution as given by Eq. (29&) is seen to

be of the same form as that obtained for the round pipe, Eq. (8), except that the
elgenfunctions are given in terms of cosine series expansions rather than Dby Qn(r)

which are obtained by numerical integration of an ordinary differential equation.
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Since the two results are of the same basic form,the solution of the transient equa-
tion follows as before and will only be given in brief outline here.

The energy Eq. (27) is integrated to yield,

1 1
%/ TdY+§i/ (1-Y2)Tdy=%3—§ (34)
0 0 =1

A transient solution is then assumed in the form

4 4
b
_ Y nm (2m + 1)nY
T=1 - E bnoGn(X,®) cos 5= + E T cos 5 (35)
n=0 m=1

and this is inserted into Eq. (34). After the integrations are carried out this

yields the following partial differential equation for a five term approximation,

2 1P 1bn2 3 1 Ppa\ NGy
A\ 35 - t55% * 56
n n no

_1Ps 1
0 7 Ppy 9 bpo

16
+ =
72

e

1 Pn1 1 Pn2_ 1 Pn3 . 1 Pne Gy
(3)3 b (5)% Pno (7)° Pno (9)° Pno X

b b b b
sl s e M) -0
no no n0O

This 1s of the same form as Eq. (12) and hence the solution can immediately be

written by analogy with the previous solution Eq. (18),

4 4 ~0n®
b ' e ® <fX
¥ » O =
T=1 - b_~lcos LG 2 cos (2m + 1)z . (386)
no Z o z
n=0 m= ~ Tk
e y © > fﬁx
where
4 b
1+ (2m + 1)(-1)" ==
Pro
2\ - (362)
0. = e 8
n 4 4 b
14 L (-1)" 2=
(Zm + lj bn
m=1
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4 b
l+§:(2m+l)(-l =
4 n0
7T m=1
W= T3 7 (36b)

b

2 )

—y (2m + 1) 0

£, = 1./,
Numerical values of 0,5 Tp, and fj; are given in Table II for a five term approx-
imation. Table III gives values for a three term spproximation which, when compared
wilth Table II, indicates how the solution converges with increasing numbers of terms
in the approximation.

Wall heat flux. - By using Fourier's law the heat transferred at the channel

walls is obtained as

mla

X twq? T, Z no|l * Z—— (-1)™(2m + 1) -5 X (37)

In the initial transient period this reduces to the purely time dependent equation,

-0 0

1«:(1;WE ‘?'_Tto Z bpo |1 +Z -1)®(em + V)fe © (38)

This can be compared with the pure conduction solution resulting from suddenly changing
the temperature at the surfaces of a slab of finite thickness and infinite extent (see

ref. (8), p. 262)

>  _(2n41)% @

EK?T—:—?Tj'— 2 :E: e

n=0

(39)

Curves calculated from Egs. (38) and (39) are included on Fig. 8, and good agreement

is obtained.
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Figures 8 and 9 show the transient heat flux and steady state times as a func-
tion of location slong the chennel. These results were obtained from Eq. (37) in
the same way that the computations were made for the circular tube case. The lower
limiting curve on Fig. 9 is obtained by letting the steady-state time be x/umax
which is equivalent to @4 = X, while for the slug flow assumption GS = %% or
@g = % X. The curve of steady state time for small X, as given in Ref. (4), is
also shown and Jjoins falrly well onto the present results.
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TABLE XI. - COEFFICIENTS FOR FLOW IN CIRCULAR TUBE
n Bi Ty Ch dwn/dR Rel a,
O} 7.31358 | 5.1540 | 1.4764 -1.0143 . 4190
44.6095 | 1l6.262 -.80612 1.3492 L7432
113.921 29.918 .58876 | -1.5723 .8078
215.241 45.392 -.47585 1.7460 .7418
4 |1348.564 62.327 . 40502 -1.8909 .5925
513.78 80.324 -.35542 2.0145 . 3963
6[711.11 99.592 .31892 | ~2.1265 .1403
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TABLE II. ~ COEFFICIENTS IN FIVE TERM APPROXTMATION FOR
FLOW BETWEEN PARAIIEIL PLATES
P10 bnl/bnO bnz/bno bnS/bnO bn4/bn0
1.17776 0.0211834 | -0.00113896 0.000207037 | -0.0000586707
.0579815 |-5.37195 -.838971 .0230766 -.00930795
.01.65696 |[-4.00649 9.45808 3.31526 .101.483
.00706883|-3.59673 7.94700 -12.0113 -7.12402
.0138607 |-3.32432 6. 61879 -11.0745 13.7624
n kg oy Tn Th
1 2.82776 | 2.30858 2.82948 | 1.22564
2 32.1475 | 11.9441 32.3656 | 2.70975
3 93.4792 | 24.9156 95.2824 | 3.82421
4 |187.388 37.4291 | 178.074 4.75764
5 | 414.761 92.5592 | 608.811 6.57754
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TABLE III. - COEFFICIENTS IN THREE TERM APPROXIMATTION

FOR FLOW BETWEEN PARALLEL PLATES

a3
z n Pno bnl/ %) an/ bnO
1 }1.18025 0.0211847 | -0.00114101
2 .0589906 | -5.37097 -.842957
3 .0339989 | -3.89954 8.99210
n Xg oy T £
1 2.82777 } 2.31337 2.83546| 1.22568

2 32.1508 |[12.1389 32.9332 | 2.71304

3 | 104.683 34.7142 | 144.296 4.15668
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Fig. 2. - Comparison of initial transient results in round tube with conduction transient.
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Fig. 3. - Schematic representation of wall heat flux computation fol-
lowing a step change 1n wall temperature.
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Fig. 4. - Transient variation in wall heat flux following a step change in wall temperature for flow

in a circular tube,
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Fig. 8. - Transient variation in wall heat flux following a step change in wall temperature for flow

between parallel flat plates.
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